Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890600

RESUMO

The melting behaviour of the triblock polymers, Pluronic F38, F68, F77, F108, and F127, was investigated in pressurised CO2 and in the presence of menthol. The melting points of the polymers combined with 0, 10, 25, and 50 wt% of menthol were studied at atmospheric pressure and compared with those at 10 and 20 MPa in supercritical carbon dioxide (scCO2). The highest melting point depressions of 16.8 ± 0.5 °C and 29.0 ± 0.3 °C were observed at 10 and 20 MPa, respectively. The melting point of triblock polymers in pressurised CO2 was found to be dependent on molecular weight, poly(propylene oxide) (PPO) content, and menthol percentage. The melting point of most of the polymers studied in this work can be reduced to room temperature, which can be pivotal to the formulation development of thermolabile substances using these polymers.

2.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614725

RESUMO

Solid core drug delivery systems (SCDDS) were prepared for the oral delivery of biomolecules using mesoporous silica as core, bovine haemoglobin (bHb) as model drug and supercritical fluid (SCF) processing as encapsulation technique. The use of organic solvents or harsh processing conditions in the development of drug delivery systems for biomolecules can be detrimental for the structural integrity of the molecule. Hence, the coating on protein-immobilised particles was performed via supercritical carbon dioxide (scCO2) processing at a temperature lower than the melting point of myristic acid (MA) to avoid any thermal degradation of bHb. The SCDDS were prepared by bHb immobilisation on mesoporous silica followed by myristic acid (MA) coating at 43 °C and 100 bar in scCO2. bHb-immobilised silica particles were also coated via solvent evaporation (SE) to compare the protein release with scCO2 processed formulations. In both cases, MA coating provided required enteric protection and restricted the bHb release for the first two hours in simulated gastric fluid (SGF). The protein release was immediate upon the change of media to simulated intestinal fluid (SIF), reaching 70% within three hours. The release from SCF processed samples was slower than SE formulations, indicating superior surface coverage of MA on particles in comparison to the SE method. Most importantly, the protein conformation remained unchanged after the release from SCDDS as confirmed by circular dichroism. This study clearly demonstrates that the approach involving protein immobilisation on silica and scCO2 assisted melt-coating method can protect biomolecules from gastric environment and provide the required release of a biologic in intestine without any untoward effects on protein conformation during processing or after release.

3.
J Pharm Anal ; 6(4): 242-248, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29403989

RESUMO

The effects of temperature, pH and long-term storage on the secondary structure and conformation changes of bovine haemoglobin (bHb) were studied using circular dichroism (CD) and ultraviolet--visible (UV-vis) spectroscopies. Neural network software was used to deconvolute the CD data to obtain the fractional content of the five secondary structures. The storage stability of bHb solutions in pH 6, 7 and 8 buffers was significantly higher at 4 °C than at 23 °C for the first 3 days. A complete denaturation of bHb was observed after 40 days irrespective of storage temperature or pH. The bHb solutions were also exposed to heating and cooling cycles between 25 and 65 °C and structural changes were followed by UV-vis and CD spectroscopies. These experiments demonstrated that α-helix content of bHb decreased steadily with the increasing temperature above 35 °C at all pH values. The loss in α-helicity and gain in random coil conformations was pH-dependent and the greatest under alkaline conditions. Furthermore, there was minimal recovery of the secondary structure content upon cooling to 25 °C. The use of bHb as a model drug is very common and this study elucidates the significance of storage and processing conditions on its stability.

4.
Int J Pharm ; 479(2): 381-90, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25579867

RESUMO

The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-ß-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-ß-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a high yield, without the use of organic solvents and problems associated with their residues.


Assuntos
Anti-Inflamatórios não Esteroides/química , Excipientes/química , Indometacina/química , beta-Ciclodextrinas/química , Varredura Diferencial de Calorimetria , Dióxido de Carbono/química , Química Farmacêutica/métodos , Cristalização , Liofilização , Microscopia Eletrônica de Varredura , Solubilidade , Solventes/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...